首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9008篇
  免费   751篇
  国内免费   931篇
  2024年   6篇
  2023年   105篇
  2022年   157篇
  2021年   480篇
  2020年   377篇
  2019年   450篇
  2018年   374篇
  2017年   275篇
  2016年   408篇
  2015年   582篇
  2014年   698篇
  2013年   782篇
  2012年   886篇
  2011年   765篇
  2010年   491篇
  2009年   464篇
  2008年   529篇
  2007年   466篇
  2006年   385篇
  2005年   297篇
  2004年   293篇
  2003年   260篇
  2002年   212篇
  2001年   146篇
  2000年   128篇
  1999年   128篇
  1998年   79篇
  1997年   58篇
  1996年   50篇
  1995年   60篇
  1994年   64篇
  1993年   40篇
  1992年   36篇
  1991年   43篇
  1990年   31篇
  1989年   23篇
  1988年   11篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Constitutional mutations in Leucine‐rich glioma inactivated 1 (LGI1) predispose to an autosomal dominant epilepsy syndrome in humans and germline inactivation of LGI1 in mice leads to early onset seizures. LGI1 is highly expressed in the regions involved in neuronal stem cell generation and migration and detailed analysis of the brains in these mice reveals a subtle cortical dysplasia characterized by hypercellularity in the outer cortical layers. To investigate the cellular origin for this cortical dysplasia, we created mice that allow cell‐specific, conditional inactivation of LGI1. Exons 3–4, which contain critical motifs for LGI1 function, were targeted for deletion and, using a CMV‐cre mouse strain, global inactivation of LGI1 led to early onset seizures and the same cortical dysplasia seen in the constitutionally null mice. Similarly, inactivation of LGI1 in cells expressing Nestin, expressed primarily in neuronal precursor cells, led to early onset seizures and cortical dysplasia. In contrast, targeting inactivation of LGI1 in cells expressing Gfap, Camk2a, and parvalbumin, did not lead to cortical dysplasia. This strain of mouse, therefore, allows for a more refined investigation of the cell types involved in the cortical dysplasia seen following inactivation of LGI1 and potentially a better understanding of the molecular mechanisms behind LGI1‐induced epilepsy.  相似文献   
62.
63.
Noc3p (Nucleolar Complex-associated protein) is an essential protein in budding yeast DNA replication licensing. Noc3p mediates the loading of Cdc6p and MCM proteins onto replication origins during the M-to-G1 transition by interacting with ORC (Origin Recognition Complex) and MCM (Minichromosome Maintenance) proteins. FAD24 (Factor for Adipocyte Differentiation, clone number 24), the human homolog of Noc3p (hNOC3), was previously reported to play roles in the regulation of DNA replication and proliferation in human cells. However, the role of hNOC3 in replication licensing was unclear. Here we report that hNOC3 physically interacts with multiple human pre-replicative complex (pre-RC) proteins and associates with known replication origins throughout the cell cycle. Moreover, knockdown of hNOC3 in HeLa cells abrogates the chromatin association of other pre-RC proteins including hCDC6 and hMCM, leading to DNA replication defects and eventual apoptosis in an abortive S-phase. In comparison, specific inhibition of the ribosome biogenesis pathway by preventing pre-rRNA synthesis, does not lead to any cell cycle or DNA replication defect or apoptosis in the same timeframe as the hNOC3 knockdown experiments. Our findings strongly suggest that hNOC3 plays an essential role in pre-RC formation and the initiation of DNA replication independent of its potential role in ribosome biogenesis in human cells.  相似文献   
64.
This study was to investigate the biological function and underlying mechanisms of FENDRR in cholangiocarcinoma (CCA) cell proliferation, migration and invasion. FENDRR and survivin expression in CCA tissues or cell lines were measured by qRT-PCR. In QBC939 and HuCCTl cells, cell proliferation was detected by CCK-8, cell migration and invasion were using transwell assay. RNA pull-down and RIP assay were performed to determine whether FENDRR can combine with SETDB1 in CCA cell. The effect of SETDB1 on survivin and H3K9me1 expression in CCA cells were determined by western blotting. ChIP analysis was performed to analyze the combination of SETDB1 with survivin promoter in CCA cell. The effect of SETDB1 knockdown on survivin and H3K9me1 expression in CCA cells after transfection with FENDRR were determined by western blotting. The results showed that lncRNA FENDRR was downregulated in CCA tissues and cells, and was negatively correlated with survivin expression. Further investigation demonstrated that FENDRR represses CCA cell proliferation, migration and invasion through regulating survivin expression. FENDRR associated with SETDB1 and H3K9 to epigenetically silence survivin and then regulated cell proliferation, migration and invasion. These findings indicate an important role for FENDRR–survivin axis in CCA cell proliferation, migration and invasion, and reveal a novel epigenetic mechanism for survivin silencing. Our data indicated that FENDRR silences survivin via SETDB1-mediated H3K9 methylation, thereby represses CCA cell proliferation, migration and invasion.  相似文献   
65.
As a novel kind of non‐coding RNA, circular RNAs (circRNAs) were involved in various biological processes. However, the role of circRNAs in the developmental process of chronic obstructive pulmonary disease (COPD) is still unclear. In the present study, by using a cell model of COPD in primary human small airway epithelial cells (HSAECs) treated with or without cigarette smoke extract (CSE), we uncovered 4,379 previously unknown circRNAs in human cells and 903 smoke‐specific circRNAs, with the help of RNA‐sequencing and bioinformatic analysis. Moreover, 3,872 up‐ and 4,425 down‐regulated mRNAs were also identified under CSE stimulation. Furthermore, a putative circRNA‐microRNA‐mRNA network was constructed for in‐depth mechanism exploration, which indicated that differentially expressed circRNAs could influence expression of some key genes that participate in response to pentose phosphate pathway, ATP‐binding cassette (ABC) transporters, glycosaminoglycan biosynthesis pathway and cancer‐related pathways. Our research indicated that cigarette smoke had an influence on the biogenesis of circRNAs and mRNAs. CircRNAs might be involved in the response to CSE in COPD through the circRNA‐mediated ceRNA networks.  相似文献   
66.
Interleukin‐27 (IL‐27) gene polymorphisms are linked to infectious disease susceptibility and IL‐27 plasma level is associated with HIV infection. Therefore, we aimed to investigate the association between IL‐27 polymorphisms and susceptibility to HIV infection and disease progression. A total of 300 patients with HIV infection (48 long‐term nonprogressors and 252 typical progressors) and 300 healthy controls were genotyped for three IL‐27 polymorphisms, rs17855750, rs181206, rs40837 which were performed by using multiple single nucleotide primer extension technique. Significant association was found between IL‐27 rs40837 polymorphisms with susceptibility to HIV infection (AG vs AA: adjusted OR = 1.60, 95% CI, 1.11‐2.30, = 0.012; AG+GG vs AA: adjusted OR = 1.44, 95% CI, 1.02‐2.03, P = 0.038) and disease progression (LTNP: AG vs AA: adjusted OR = 2.33, 95% CI, 1.13‐4.80, P = 0.021; TP: AG vs AA: adjusted OR = 1.50, 95% CI, 1.04‐2.24, P = 0.030). Serum IL‐27 levels were significantly lower in cases compared to controls (< 0.001). There were lower serum IL‐27 levels in TPs than in LTNPs (< 0.001). We further found that LTNPs with rs40837 AG or GG genotype had lower serum IL‐27 levels than with AA genotype (< 0.05). The CD4+T counts in cases were significantly lower than controls (< 0.001). In contrast, individuals with rs40837 AG genotype had lower CD4+T counts than with AA genotype in cases (< 0.05). In addition, CD4+T counts in TPs were significantly lower than LTNPs (< 0.001). IL‐27 rs40837 polymorphism might influence the susceptibility to HIV infection and disease progression probably by regulating the level of serum IL‐27 or the quantity of CD4+T.  相似文献   
67.
68.
Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm?1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation.  相似文献   
69.
Transition metal oxides hold great promise as high‐energy anodes in next‐generation lithium‐ion batteries. However, owing to the inherent limitations of low electronic/ionic conductivities and dramatic volume change during charge/discharge, it is still challenging to fabricate practically viable compacted and thick TMO anodes with satisfactory electrochemical performance. Herein, with mesoporous cobalt–boride nanoflakes serving as multifunctional bridges in ZnCo2O4 micro‐/nanospheres, a compacted ZnCo2O4/Co–B hybrid structure is constructed. Co–B nanoflakes not only bridge ZnCo2O4 nanoparticles and function as anchors for ZnCo2O4 micro‐/nanospheres to suppress the severe volume fluctuation, they also work as effective electron conduction bridges to promote fast electron transportation. More importantly, they serve as Li+ transfer bridges to provide significantly boosted Li+ diffusivity, evidenced from both experimental kinetics analysis and density functional theory calculations. The mesopores within Co–B nanoflakes help overcome the large Li+ diffusion barriers across 2D interfaces. As a result, the ZnCo2O4/Co–B electrode delivers high gravimetric/volumetric/areal capacities of 995 mAh g?1/1450 mAh cm?3/5.10 mAh cm?2, respectively, with robust rate capability and long‐term cyclability. The distinct interfacial design strategy provides a new direction for designing compacted conversion‐type anodes with superior lithium storage kinetics and stability for practical applications.  相似文献   
70.
Herein, a novel electrospun single‐ion conducting polymer electrolyte (SIPE) composed of nanoscale mixed poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) and lithium poly(4,4′‐diaminodiphenylsulfone, bis(4‐carbonyl benzene sulfonyl)imide) (LiPSI) is reported, which simultaneously overcomes the drawbacks of the polyolefin‐based separator (low porosity and poor electrolyte wettability and thermal dimensional stability) and the LiPF6 salt (poor thermal stability and moisture sensitivity). The electrospun nanofiber membrane (es‐PVPSI) has high porosity and appropriate mechanical strength. The fully aromatic polyamide backbone enables high thermal dimensional stability of es‐PVPSI membrane even at 300 °C, while the high polarity and high porosity ensures fast electrolyte wetting. Impregnation of the membrane with the ethylene carbonate (EC)/dimethyl carbonate (DMC) (v:v = 1:1) solvent mixture yields a SIPE offering wide electrochemical stability, good ionic conductivity, and high lithium‐ion transference number. Based on the above‐mentioned merits, Li/LiFePO4 cells using such a SIPE exhibit excellent rate capacity and outstanding electrochemical stability for 1000 cycles at least, indicating that such an electrolyte can replace the conventional liquid electrolyte–polyolefin combination in lithium ion batteries (LIBs). In addition, the long‐term stripping–plating cycling test coupled with scanning electron microscope (SEM) images of lithium foil clearly confirms that the es‐PVPSI membrane is capable of suppressing lithium dendrite growth, which is fundamental for its use in high‐energy Li metal batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号